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We describe three new schemes to explore homonuclear cross- that the two interactions considered have one common spin.
correlation contributions to relaxation along an effective field tilted We will use the following notation: cross-correlation be-
by an angle u from the static magnetic field direction. Their key tween two dipolar interactions will be DD/DD, and that
feature is to detect, during the evolution time t1 , multiquantum between one dipolar and CSA interaction will be CSA/DD.
transverse coherences whose frequencies are characteristic of the Although cross-correlation has been described theoreti-
multispin order produced by cross-correlation processes. This

cally in NMR for more than 30 years (2–6) , very fewmakes it possible to obtain in-phase magnetization in both dimen-
methods have been suggested and tested experimentally forsions. The three schemes correspond to the combination of two
measuring cross-correlation rates (9, 10) , and there haveevolutions due either to static J coupling in the transverse plane
been few publications on their use for the exploration ofor to cross-correlation cross-relaxation along an effective field.
structural or dynamic properties of molecules (11, 12) .This combination allows the conversion of one-spin order into

multispin order and the reverse. If only cross-correlation cross- Starting from this surprising observation, we have tried to
relaxation transfers are involved, there is no restriction on the understand why measuring cross-correlation rates presents
coupling network. The quantitative exploitation of the results to difficulties.
obtain structural information from cross-correlation-induced re- First of all, the largest effect induced by cross-correlations
laxation rates requires a normalization coefficient which is pro- is on the evolution of transverse magnetizations (13) . It
vided by the simultaneous monitoring of one-spin coherence. results in a different width for each line of a multiplet
These ideas have been tested experimentally in the case of dipole–

(8, 13) , an effect which has been called ‘‘differential linedipole cross-correlation on a sample of cyclosporin. Buildup curves
broadening’’ (14) , or in the observation of extra cross-peaksat various angles u are described which yield information on the
in COSY experiments (15) . The strong chemical shift an-internal dynamics. q 1997 Academic Press

isotropy on nuclei other than protons gives rise to nonnegli-Key Words: cross-correlation; relaxation; multiquantum; multi-
gible cross-correlation (10) , and several experiments havespin orders; spectral density.
been suggested to measure heteronuclear transverse self-re-
laxation rates (1/T2) without artifacts from CSA/DD cross-

I. INTRODUCTION correlation (16–19) . However, because of uncertainties in
the coupling network, the homogeneity, the phase of the

Relaxation theory is a second-order time-dependent per- spectrum, the noise level, etc., it is difficult from standard
turbation theory (1) , which makes use of the correlation transverse relaxation measurements to extract reliable values
function of a randomly varied Hamiltonian at different times. for the cross-correlation rates.
Most of the time, this random Hamiltonian H1( t) is the sum For relaxation along an effective field, cross-correlation
of different terms, and depending on their tensorial character, leads most of the time to a change in the number of spins
cross-correlation terms can or cannot be present (2–8) . In involved in the coherence. We will refer to these cross-
the following, we will refer to cross-correlation-induced re- relaxation processes as cc-cross-relaxation in contrast with
laxation simply as cross-correlation. For a diamagnetic sam- the ac-cross-relaxation where only auto-correlation functions
ple composed of spins 1

2, the two kinds of interactions be- are involved. The easiest way to measure the cc-cross-relax-
tween which cross-correlation may appear are dipole–dipole ation rates consists therefore in turning longitudinal n-spin
(DD) and chemical shift anisotropy (CSA). This requires order coherences into n quantum coherences combined with

a n-quantum filter. This has been done in DQF- (20) and
TQF-NOESY (21) experiments, which allow the measure-* Present address: Laboratoire Commun de R.M.N., Service de Chimie

Moléculaire, C.E.A. Saclay, F-91191 Gif sur Yvette, France. ment of the transformation of longitudinal one-spin order
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2 HERVÉ DESVAUX

into two- (respectively three) spin order due to the CSA/ correlation even if the coupling network contains more spins
(R4).DD (DD/DD, respectively) cross-correlation. This filtering

always gives rise to an antiphase spectral pattern in the di- —The pulse sequence should work even in the absence
of scalar coupling between the spins (R5).mension F2. The main drawback of this approach is the

presence in the spectrum of zero-quantum cross peaks
Keeping in mind these requirements (R1–R5), we have

(20, 21) . In large molecules where vtc @ 1, cc-cross-relax-
tried to inductively design new schemes to measure cc-cross-

ation rates, which only depend on J(v) , are negligible com-
relaxation rates. Their key ideas are based on the following

pared to the other relaxation rates which also depend on
remarks:

J(0) @ J(v) (8, 22, 23) . This difficulty has been overcome
by the use of off-resonance RF irradiation (24) , which ap- (i) During the evolution time t1 of a 2D experiment, one
pears for measuring cc-cross-relaxation as a mandatory re- can simultaneously acquire the transverse evolution of multi-
quest, which we call R1. Longitudinal relaxation measure- quantum coherences of different orders (34, 35) , for exam-
ments have also been used for the heteronuclear case, where ple, single and triple quantum. The single-quantum peak
it is possible to obtain in-phase cross peaks through a refo- intensity gives access to the normalization coefficient (R3).
cusing delay as a result of the large difference of resonance The evolution of multiquantum coherences induces in-phase
frequencies and to the large and nearly constant 1JHX scalar cross peaks in the dimension F1 (R2a), and their resonance
coupling values (25–27) . The same approach can be used frequencies are characteristic of the involved protons (R4).
for the homonuclear case, through selective spin-lock irradi- Finally multiquantum transverse coherences do not require
ation and selective transfer (28) , but the remote couplings scalar coupling between the involved spins (R5).
may influence the measurement (29) and a very high mag- (ii ) It is possible to transform multiquantum coherences
netic field is then required (30) . into multispin order along an effective field axis (R1)

The theoretical expressions of cc-cross-relaxation rates through p /2 hard pulses and off-resonance RF irradiation
show that they contain structural information (see below). with adiabatic rotations (36) .
In particular, DD/DD cc-cross-relaxation rates depend on (iii ) During the time t2 , one acquires only single-quantum
the angle sustained by the two pairs of spins and on the coherences, but only single-quantum–one-spin order coher-
internuclear distances. Such an angular constraint would rep- ences at t2 Å 0 yield nonvanishing integrals (R2a, R2b).
resent a large improvement for structure determination, since

Combining these three ideas results in the design of pulsethis information can only be determined through triangula-
sequences. They should allow the transformation of magneti-tion by NOESY-like experiments when the three spins are
zation from its thermal equilibrium value to multiquantumnot coupled. In such a case, the Karplus law (31) does
transverse coherences during the evolution time t1 and backnot hold. This angular information seems to be particularly
to one quantum for the acquisition time t2 . The conversionrelevant for large deuterium-labeled proteins for which the
(or the reverse process) of one-spin order into multispinstructural information is only obtained from the amide pro-
order can be obtained either by the transverse evolution un-tons and the triangulation becomes very difficult (32, 33) .
der the influence of the static scalar coupling HamiltonianOne should however notice that in a buildup curve, the initial
(we label this evolution process J) or by the longitudinalslope is proportional to krI0 , where k is the cross-relaxation
relaxation evolution under the influence of cross-correlationrate and I0 is the ‘‘diagonal’’ peak magnetization at tm Å ( label d) . We name each sequence with the succession (a–0. Only relative structural constraints can thus be determined
b) of the two-evolution process which creates a and backif the normalization coefficient I0 is not measured.
converts b multiquantum coherences. The three possible se-At this stage, it becomes possible to summarize the other
quences which allow the study of cc-cross-relaxation are d–desirable conditions for measuring cross-correlation cross-
J , J– d, and d– d.relaxation rates:

This article is organized as follows. The expressions of
the relaxation rates along an effective field axis are first given—Obtaining in-phase cross peaks in both dimensions
in the case of n homonuclear spins. For the experimental(R2a) would be a nice feature since it would facilitate the
application, we focus on dipole–dipole cross-correlation andquantitative integration of the signal. Moreover the integra-
describe the three sequences with experimental illustrations.tion procedure allows one to circumvent the inconveniences
We finally discuss their relative advantages and drawbacks.associated with zero-quantum cross peaks, whose absence

(R2b) is desirable but not always possible.
II. THE RELAXATION RATES—The determination of the normalization factor (R3)

during the same acquisition time would be a valuable advan-
A. Expressions of the Relaxation Rates

tage for structural purposes.
—It is necessary to obtain spectra where it is possible to We consider a spin system composed of n homonuclear

spins 1
2 ( typically protons) , called I k , whose Larmor fre-assign the two or three spins involved in a given cross-
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3HOMONUCLEAR CROSS-CORRELATION CROSS-RELAXATION RATES

quency is v. These spins experience a strong off-resonance can be determined by noting first that the CSA interaction
RF irradiation whose amplitude is 2v1 and frequency v / depends on one spin only whereas the dipolar interaction
D. We consider the relaxation of any spin order coherence depends on two spins, and second that the master equation
along the effective field axis OZ due to dipolar and CSA of relaxation contains double commutators involving the co-
interactions. The effective field makes an angle u with the herence under study and the two interaction terms. As a
static magnetic field Oz (37) : consequence, CSA interaction on spin I k would contribute

to relaxation of the coherence 2mIa
ZIb

ZI c
Zrrr only if k √ {a ,

b , c , rrr}. Otherwise the double commutators vanish, since
tan u Å v1

D
. [1] operators of different spins commute. Moreover the commu-

tation property of the different spins allows a factorization
in the double commutators of the master equation of all spinsThe effective field amplitude V in the rotating frame is
different from I k . The elementary self-relaxation rate
r abcrrr

k is then equal to r k
k . We thus haveV Å

√
D 2 / v 2

1 . [2]

r abcrrr
k Å 0 if k √/ {a , b , c , rrr} [3a]The RF field amplitude v1 and the offset D are assumed

to be sufficiently large to allow the neglect of all offset r abcrrr
k Å r k

k if k √ {a , b , c , rrr}. [3b]
effects due to the dispersion of proton chemical shifts. We
consequently consider only one angle u for all protons (37) . We can also compute the elementary self-relaxation rate
In this section, we summarize all relaxation rates expressions r abcrrr

k ,l of 2mIa
ZIb

ZI c
Zrrr due to the dipole–dipole interaction

in the case of dipolar and axially symmetric CSA relaxation between I k and I l :
along the effective field axis OZ . We assume that the overall
correlation time tc is small enough for the condition Vtc !

r abcrrr
k ,l Å 0 if k √/ {a , b , c , rrr}1 to be fulfilled. This means that tc is shorter than about

100 ns (38) . We have derived most of these expressions and l √/ {a , b , c , rrr} [4a]
from those published (8, 22, 23, 28, 37) . The other relax-

r abcrrr
k ,l Å r k

k ,l if k √ {a , b , c , rrr}ation rates have been computed through the classical proce-
dure using the master equation of relaxation and the Wigner and l √/ {a , b , c , rrr} [4b]
matrices (39) for easy computations of the changes of repre-

r abcrrr
k ,l Å r l

k ,l if k √/ {a , b , c , rrr}sentation (see Refs. (8, 22, 35, 37, 38) for examples of re-
laxation rate computation). To express the relaxation rates and l √ {a , b , c , rrr} [4c]
in term of spectral density values an assumption on the nor-

r abcrrr
k ,l Å r kl

k ,l if k √ {a , b , c , rrr}malization of the second rank irreductible tensors T2,m is
required. We choose and l √ {a , b , c , rrr}. [4d]

∀m , Tr(T2,mT †
2,m) Å 1

4. All elementary self-relaxation rates can be expressed in
terms of r k

k , r k
k ,l , and r kl

k ,l . These three rates have the follow-
ing expressions:1. Self-relaxation rates. We note all self-relaxation rates

as r abcrrr where the exponent abcrrr means that it is the • For the dipolar relaxation rates of one spin order I k
Z due

sel f re laxa t ion of the m / 1 mul t i sp in order to dipolar interaction between spins I k and I l ,
2mIa

ZIb
ZI c

Zrrr. We obtain this self-relaxation rate by decom-
posing the random Hamiltonian H1( t) into a sum of terms,

r k
k ,l Å ( 1

3 /
1
2 sin2u)Jk ,l(0)each representing an interaction, either the CSA interaction

of one spin or the dipole–dipole interaction between two / (1 / 1
2 sin2u)Jk ,l(v)

spins. Each pair of interaction terms represents an elemen-
tary contribution. In fact, for dipolar and CSA interactions, / (2 0 sin2u)Jk ,l(2v) , [5]
no cc-self-relaxation contribution exists ( this result is ob-
tained by the same analysis as described below). r abcrrr is where Jk ,l is the dipolar spectral density associated to the
then a sum of elementary ac-self-relaxation rates. We note dipolar interaction between I k and I l .
each elementary contribution as r abcrrr

b , where abcrrr rep- • The self-relaxation rate of one-spin order I k
Z due to

resents the spin order as described previously, and b repre- chemical shift anisotropy relaxation on spin I k is
sents the interaction: b Å a , b means the dipolar interaction
between Ia and Ib , bÅ a means the chemical shift anisotropy

r k
k Å 8

3 sin2uJk(0) / 2(cos2u / 1)Jk(v) , [6]on proton I a . The number of elementary self-relaxation rates
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4 HERVÉ DESVAUX

where Jk is the spectral density associated to the chemical dk ,klÅ04 sin2u cos uJk ,kl(0)0 4 cos3uJk ,kl(v) , [11]
shift anisotropy of spin I k .

• Finally the dipolar self-relaxation rate of two-spin order where Jk ,kl is the Fourier transform of the CSA–dipole cross-
terms 2I k

ZI l
Z due to the I k–I l dipolar interaction is correlation function.

All cross-relaxation rates can be expressed by linear com-
binations of these three rates. We successively express ther kl

k ,l Å 3 sin2u cos2uJk ,l(0)
cross-relaxation rates s a =b =c =rrr

abcrrr between 2mIa
ZIb

ZI c
Zrrr and/ (4 cos4u 0 3 cos2u / 1)Jk ,l(v)

2m=Ia =
Z Ib =

Z I c =
Z rrr as a function of the difference of spin order

Ém* 0 mÉ./ (1 0 cos4u)Jk ,l(2v) . [7]

• For m* 0 m Å 0, if the two coherences 2mIa
ZIb

ZI c
ZrrrThe self-relaxation rate expression of any spin order is

and 2mIa =
Z Ib =

Z I c =
Z rrr do not have (m 0 1) common spins,

obtained by considering all elementary contributions and
the cross-relaxation rate s a =b =c =rrr

abcrrr vanishes; otherwise,
using Eqs. [3] and [4]. The general expression of the self-
relaxation rate of the m-spin order term 2mIa

ZIb
ZI c

Zrrr is
s a =bcrrr

abcrrr Å sa ,a = / ∑
k√ {b ,c ,rrr}

dk ,aka = . [12]

r abcrrr Å ∑
k√ {a ,b ,c ,rrr}

∑
l√/ {a ,b ,c ,rrr}

r k
k ,l

• For Ém* 0 mÉ Å 1, and assuming without loss of gener-
/ ∑

(k ,l )√ {a ,b ,c ,rrr}
kõl

r kl
k ,l / ∑

k√ {a ,b ,c ,rrr}

r k
k . [8] ality m* ú m , s a =b =c =rrr

abcrrr does not vanish only if the two
coherences have m common spins. The rate expression is
then

If we consider a large number of spins, Eq. [8] shows
s a =abcrrr

abcrrr Å ∑
k√ {a ,b ,c ,rrr}

dk ,ka = . [13]that self-relaxation rates generally increase with the number
of coherences involved in the longitudinal spin order.

2. Cross-relaxation rates. We note the cross-relaxation • For Ém* 0 mÉ Å 2, and choosing as above m* ú m ,
rates between 2mIa

ZIb
ZI c

Zrrr and 2m=Ia =
Z Ib =

Z I c =
Z rrr as

s a =b =c =rrr
abcrrr does not vanish only if the two coherences have

s a =b =c =rrr
abcrrr Å s abcrrr

a =b =c =rrr . The same decomposition of the ran- m common spins. The rate expression is then
dom Hamiltonian H1( t) and the same exploration of the
possible contribution to cross-relaxation can be performed

s a =b =abcrrr
abcrrr Å ∑

k√ {a ,b ,c ,rrr}

dk ,a =kb = . [14]
for cross-relaxation as was described for self-relaxation. We
do not detail it and we give directly the result. All elementary
cross-relaxation rates depend only on the following three. • Finally for Ém* 0 mÉ ú 2, the cross-relaxation rate
The dipolar ac-cross-relaxation rate between one-spin order s a =b =c =rrr

abcrrr always vanishes.
terms I k

Z and I l
Z due to the dipolar interaction between I k

For a large spin system, the cross-relaxation rates (Eqs.and I l is
[12] – [14]) generally increase with the number of spins
involved in the longitudinal spin order. It results that thesk ,l Å (sin2u 0 1

3 )Jk ,l(0) / sin2uJk ,l(v)
validity of initial slope approximation in a buildup curve
should hold for a shorter time for high number spin order/ 2 cos2uJk ,l(2v) . [9]
than for one-spin order.

The dipolar cc-cross-relaxation rate between one I k
Z and

B. Correlation Function Expressionsthree 4I l
Z I k

ZIm
Z spin order terms due to the dipolar interactions

between the two pairs I k 0 I l and I k 0 Im is 1. General expression. It has already been shown that
the expressions of ac-self- and ac-cross-relaxation rates as

dk ,lkm Å 3 sin2u cos2uJk ,lkm(0) a function of the spectral densities are general, when the
dipolar or CSA interactions do not have any static contribu-/ (4 cos4u 0 3 cos2u / 1)Jk ,lkm(v)
tion to the Hamiltonian (1, 37) . The same result can be

/ sin2u(1 / cos2u)Jk ,lkm(2v) , [10] obtained for cc-cross-relaxation rates between two interac-
tions of rank two.

where Jk ,lkm is the Fourier transform of the dipole–dipole We arbitrarily choose one of the two interactions and
cross-correlation function between I k 0 I l and I k 0 Im . Fi- define it as the ‘‘first’’ interaction. We define the orientation
nally, the CSA/DD cc-cross-relaxation rate between one in the molecular frame of the ‘‘first’’ interaction relative to

the second as V1 Å (u1 , f1) . We define the orientation ofI k
Z and two 2I k

ZI l
Z spin order terms due to dipolar interaction

between I k and I l and chemical shift anisotropy on I k is the second interaction relative to the laboratory frame as
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5HOMONUCLEAR CROSS-CORRELATION CROSS-RELAXATION RATES

V2 . We call the second-rank tensorial products in the frame
attached to the second interaction as T *2,m= , and we call them

Jk ,lkm(v) Å 3
10

g 4\ 2

r 3
kl r

3
km

3 cos2f lkm
s 0 1

2
tc

1 / v 2t 2
c

,

T2,m in the laboratory frame. The ‘‘first’’ interaction can
[19]consequently be expressed as

H1( t) Å ∑
2

m=Å02

z1Y2,m=(V1)T *2,m= [15] where f lkm
s (previously called u1) is the angle between the

vectors I k I l and I k Im:

Å ∑
2

m=Å02

z1Y2,m=(V1) ∑
2

mÅ02

D 2
m=,m(V2)T2,m , [16]

cos2f lkm
s Å (rkl

r
rrkm

r
)2

rklrkm

. [20]where the ‘‘first’’ interaction has first been expressed in the
frame attached to the ‘‘second’’ and then expressed in the
laboratory frame. The D 2

m ,m=(V) are the Wigner matrices of The following comments can be made about the structural
rank two, the Y2,m(V) are the second-rank spherical harmon- information provided by cross-correlation rates. In a triangle
ics, and z1,2 depends on the type of interaction considered the description of the geometry requires three parameters
(CSA or dipolar) . Correlation functions can then be com- out of the following six f lkm

s, f klm
s, f kml

s, rkl , rkm , and rlm ;
puted [1]: they are not independent due to the relation between the

three angles in a triangle. As a consequence a complete
G(t) Å ∑

2

m=Å02

distance extraction through NOESY may be sufficient to
characterize the triangle. However for many geometries, it
may happen that one of the distances cannot be accurately1 z1(0)z2(t)Y2,m=(V1(0))D 2

m ,m=(V2(0))Y2,0m(V2(t)) .
determined because of spin-diffusion process or too large

[17] internuclear distances, and then the angle value becomes
relevant. In any case, it is a useful check of the consistency

Finally the spectral density function is the Fourier transform of the distance extraction. Another potentially interesting
of this function. Using this approach to compute the spectral feature of the structural information contained in cross-corre-
density functions, we find that the coefficients in front of lation cross-relaxation rates is that it allows a fast approxi-
the spectral density values in the rate expressions are inde- mate characterization of the triangle shape from the sign of
pendent of the motional model. One may also notice that the spectral density function.
the sign of the cross-correlation spectral density values can For an axially symmetric CSA tensor, the CSA spectral
be either positive or negative so that no preliminary guess density function is
can be made. This is in contrast to the case of the auto-
correlation spectral density function.

Jk(v) Å 1
30

v 2(Dsk)2 tc

1 / v 2t 2
c

, [21]2. Isotropic Brownian motion. We assume that the mol-
ecule undergoes a Brownian isotropic motion without dis-
tance variations. It is then described by a single correlation

where Dsk is the chemical shift anisotropy on spin I k . Thetime tc . Under these conditions, the angle V1 is constant
spectral density of the CSA/DD cross-correlation isand the term Y2,m=(V1(0)) in the sum (Eq. [17]) can be

factorized out. We must then consider the averaging of
D 2

m ,m=(V2(0))Y2,0m(V2(t)) . Using the properties of the Jk ,kl(v) Å 1
10

vDsk
Wigner matrices (39) , these terms are different from 0 only
if m* is equal to 0. We find, in agreement with previous

1 g 2\

r 3
kl

3 cos2wk ,kl 0 1
2

tc

1 / v 2t 2
c

, [22]published results (8, 22, 23) , that the correlation function
depends on Y2,0 (V1) Å (3 cos2u1 0 1)/2. The different
spectral density functions have the following expressions.

where wk ,kl (previously called u1) is the angle between theThe dipole spectral density function is
vector rkl

r
and the axial direction of the CSA tensor on I k .

Cases of nonaxially symmetric CSA tensors can be treated
Jk ,l(v) Å 3

10
g 4\ 2

r 6
kl

tc

1 / v 2t 2
c

, [18] in a similar manner (8) .
3. Others types of motion. The analytical expressions of

the spectral density functions for others types of motionswhere g is the magnetogyric ratio and rkl the internuclear
distance between spins I k and I l . The spectral density of the require a motional model. Werbelow and Marshall (40) have

considered the case of anisotropic Brownian motions in thedipole–dipole cross-correlation is

AID JMR 1184 / 6j1f$$$$44 07-16-97 10:36:43 maga



6 HERVÉ DESVAUX

spectra were acquired by varying the different acquisition
parameters in order to validate the experimental results,
some (not shown since they have been acquired without
off-resonance RF irradiation) have also been acquired on a
Varian Unityplus operating at 720 MHz with a z gradient
inverse triple-channel probehead.

Experiments to characterize the dynamic properties of the
molecule have also been carried out. In particular, an average
value of the correlation time per pair of protons has been
determined using six 2D off-resonance ROESY matrices
corresponding to six values of the angle u (07, 107, 207, 307,
407, and 477) and one mixing time tm Å 100 ms. Using the
procedure published in Ref. (41) , at 303 K the average value
of the correlation time per pair of protons was equal to 0.27FIG. 1. Variation of the dipole–dipole cross-correlation cross-relax-

ation rates as a function of the angle u and of the correlation time tc . An ns. Furthermore, diffusion processes have been explored to
isotropic Brownian motion is assumed. As already observed (24) , for large evaluate the possible loss of signal due to the use of encoding
molecules the maximum of the cc-cross-relaxation rate is obtained for u Å gradients. The principle was to compare spectra at various
457 and the rate vanishes for u Å 07 and u Å 907.

mixing times, tm, acquired by 1D selective off-resonance
ROESY without encoding gradients and with encoding gra-
dients ( the latter is a straightforward modification of the
GOESY sequence (44)) . The ratio of diagonal peaks ob-

case of dipole–dipole cross-correlation contributions to re- tained by each sequence at each mixing time gives informa-
laxation. In this model, the dipolar cc-cross-relaxation rate tion concerning the signal loss by translational diffusion.
dk ,lkm is no longer proportional to the second-rank Legendre Typically with a gradient of maximum amplitude 10 G ap-
polynomial of f lkm

s, but also involves all second-order spher- plied for 1 ms, 50% of the signal is lost in 150 ms. The use
ical harmonics. The cases of internal motions is particularly of strong gradients to encode the signal should consequently
difficult to describe because the angle V1 of Eq. [17] is not be handled with care.
constant and furthermore its variation may be correlated to
that of V2 . IV. DESCRIPTION OF THE SEQUENCES

Finally, a careful study of Eqs. [10] and [11] shows that
the cross-correlation spectral density values at two (resp. For the experimental description, we focus on the dipole–
three) frequencies of the CSA/DD (resp. DD/DD) cross- dipole cross-correlation and disregard the CSA relaxation
correlation can be determined at one static magnetic field, by mechanism, since for proton nuclei in a field of 7 T it appears
measuring the cc-cross-relaxation rates at two (resp. three) to be negligible. According to the schemes described in the
different angles u between the static and the effective field. Introduction, the relevant coherences during the evolution
This method of determination of spectral density values is an time should be the transverse triple-quantum coherences,
extension of that developped for dipolar ac-cross relaxation since the DD/DD cross-correlation induces the creation of
(41) . As an example, Fig. 1 shows the variation of the three-spin order from one-spin order. As already mentioned,
dipole–dipole cc-cross-relaxation rate as a function of the there are two processes which enable the interconversion of
angle u for an isotropic Brownian motion. single to triple quantum: either an evolution in the plane due

to the J-coupling Hamiltonian, followed by hard pulses, or
an evolution along an effective field axis under the influenceIII. EXPERIMENTAL PARAMETERS
of cross-correlation d followed by the transformation of lon-
gitudinal three-spin order into triple quantum through hardAll experiments have been carried out on samples of

cyclosporin disolved in CDCl3 . Cyclosporin is a cyclic unde- pulses.
According to the schemes described in the Introduction,capeptide (MeBmt–Abu–Sar–MeLeu–Val–MeLeu–Ala–

D-Ala–MeLeu–MeLeu–MeVal) . The assignment of its the reference experiment is the J coupling for creation and
J coupling for detection. We have implemented this triple-proton resonances has been published (42) , and its structure

determined (43) . The experimental temperature was 303 K. quantum spectroscopy (TQS) sequence (Fig. 2) using en-
coding gradients and phase sensitive mode through time pro-All spectra have been acquired on Bruker DMX300 spec-

trometers, either in a narrow- or a wide-bore magnet at 7 T. portional phase increments (45) . As a reference, a spectrum
obtained with this sequence on cyclosporin is shown in Fig.The spectrometers are equipped with three axes gradients,

and the probeheads used are either a broadband inverse dou- 3. All cross peaks can be assigned using the published chemi-
cal shift data. One can notice that, due to proton equivalenceble channel or a broadband inverse triple channel. Many
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7HOMONUCLEAR CROSS-CORRELATION CROSS-RELAXATION RATES

tive field axis and also bring them back (36) . As the spin
system evolves, all odd numbers of longitudinal spin orders
are created through relaxation, in particular the three-spin
order. The restriction to odd longitudinal spin order results
from the assumption of purely dipolar relaxation. The 907
hard pulse converts these 2p / 1-spin order coherences
into multiquantum transverse coherences whose number is
at most 2p / 1, in particular triple-quantum transverse co-
herences for longitudinal three-spin orders (34) . These
transverse magnetizations are labeled in frequency during t1

and converted back to single-quantum through the 907 pulse
FIG. 2. Pulse sequence of the triple-quantum spectroscopy used in this following t1 . The phase cycling of the hard pulse preceeding

article. The G line represents the gradient pulses, the Q lines the selected the evolution time allows one to select the triple-quantum
coherence pathway for 03 to /3 quantum. The SO line represents the transverse coherences. In this sequence, we can add encoding
longitudinal spin order, from 0 (transverse magnetization) to 5 longitudinal

gradients to help select the triple-quantum coherences duringspin order. In the pulse sequence, the small (resp. large) filled boxes repre-
t1 and the single-quantum coherences after the last 907 hardsent 907 (resp. 1807) hard pulses, and the duration D is chosen equal to

1
4J . The gray half-ellipses represent encoding gradients. The values of G1, pulse. Using the echo–antiecho scheme, a phase sensitive
G2, and G3 are chosen so that 3rG3 Å G1 0 G2. The phase of the hard spectrum can be recorded.
pulses is as follows: f1 Å 07, 607, 1207, 1807, 2407, 3007, 1807, 2407, 3007, In principle, this sequence is not very different from that
07, 607, 1207; f2 Å 07, 607, 1207, 1807, 2407, 3007, 1807, 2407, 3007, 07,

proposed by Böhlen et al. (48) who also suggested starting607, 1207, 07, 607, 1207, 1807, 2407, 3007, 1807, 2407, 3007, 07, 607, 1207;
from the creation of longitudinal multispin order. The differ-f4 Å 07. The receiver phase fr is 07, 1807, 07, 1807, 07, 1807, 1807, 07, 1807,

07, 1807, 07. Finally phase-sensitive experiments are obtained by adding 307 ence resides in the detection. Their sequence was based on
to f1 and f2 every two FIDs. a Fourier transform on the phase of the first hard pulse of

the filter which corresponds to the transformation of
multispin order into single-quantum coherence.

Figure 5 shows a spectrum obtained with the d– J se-(methyl) or strong coupling conditions, cross peaks can be
quence. The total experiment time was about 11 h. Manypresent at frequencies in the v1 dimension other than the
cross peaks are present and can easily be assigned throughsum of the chemical shifts of the three partners (46) . We
their resonance frequencies in both dimensions. This se-successively consider the three sequences of cross-correla-
quence does not allow one to acquire in-phase magnetizationtion exploration (d– J , J– d, and d– d) . We will neglect the
in the second dimension due to the dispersion of proton Jpossible transformation of single-quantum-one-spin coher-
coupling values which does not allow complete refocaliza-ence into single-quantum-three-spin coherence through the
tion before acquisition. However no zero-quantum cross-effect of transverse evolution in the presence of cross-corre-
peak transfer can occur, so that one can perform an integra-lation (15) . This effect, which induces relaxation-allowed
tion in the magnitude mode. A comparison of the d– J spec-cross peaks in COSY experiments (15) , can always occur,
trum with the TQS spectrum shows that some cross peaksbut the rate of interconversion is on the order of d (47)
have disappeared. Using the d– J sequence for short mixingwhich is always much smaller than the J coupling values
times (condition of initial slope approximation), a crossinducing resolved multiplets. The transverse evolution times
peak at the frequency (vj / vk / vl , vk) requires that Jwe have used are always too small (between 10 and 360 ms
coupling values between I j and I k and between I k and I l dofor the acquisition) to observe transverse cross-correlation
not vanish. The absolute cross-peak intensity is proportionalcross-relaxation rates smaller than typically 0.2 s01 .
to the sum of the cc-cross-relaxation rates: s j

jkl / s k
jkl /

s l
jkl Å dj,kjl / dk ,jkl / dl ,j lk .A. Creation by d and Back Conversion by J Coupling
To check the consistency of the results, buildup curves

The d– J sequence is represented in Fig. 4. The initial have been measured for various angles u. An example is
thermal equilibrium of the system is perturbed by the first given for u Å 07 (Fig. 6) . Note that buildup curve behavior
pulse. Various choices can be made, either a simple 1807 is regular. As theoretically predicted, no fluctuation due to
pulse or a saturation, such as that produced by a 907 hard the spin–spin coupling constants can be detected.
pulse followed by a strong dephasing gradient. They produce
different initial conditions. During the time tm, the spin B. Creation by J Coupling, Back Conversion through
system evolves under the influence of relaxation along an Cross-Correlation
effective field axis tilted by the angle u (Eq. [1]) . The irradi-
ation pulse is shaped such that adiabatic rotations bring the The second way explored was to create the triple-quantum

coherences by J-coupling-induced transverse evolution, andmagnetization from the static magnetic field axis to the effec-
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8 HERVÉ DESVAUX

FIG. 3. TQS spectrum acquired with the sequence of Fig. 2. The experimental time was about 4 h, the duration D was chosen equal to 25 ms. The
cross-peak amplitudes are of course dependent on this time. The six labeled cross peaks correspond respectively to the Val-5 (HNHaHb , Ha) , Ala-7
(HNHaHb , Ha) , D-Ala-8 (HNHaHb , Ha) , Ala-7 (HaHbH *b , Ha) , D-Ala-8 (HaHbH *b , Ha) , and MeLeu-9 (HaHbH *b , Ha) interactions.

FIG. 4. Pulse sequence to explore dipole–dipole cross-correlation; three-spin order coherences are created by evolution under the influence of cross-
correlation and converted to transverse triple-quantum coherences. The transverse three-spin order single-quantum coherence is detected through the
transverse evolution due to scalar coupling. The same definitions as described in the legend to Fig. 2 are used. The nonfilled box represents the perturbing
pulse. It could be either a saturation pulse or a 1807 hard pulse; its phase c is set to 07. The gray trapeze of duration tm represents the relaxation along
an effective field axis with adiabatic rotation (36) . The black half-ellipse Gp is a purging gradient, applied along a different axis than the coding gradients.
The values of the encoding gradients are chosen so that 3rÉG3É Å G1 0 G2. By alternation of the sign of G3, a phase-sensitive experiment is obtained.
Finally during the time tm all odd-spin order coherences are created through self-relaxation and ac- and cc-cross-relaxation. As a function of the choice
of perturbing pulse, and as shown by the arrow labeled a , the buildup starts either from 0 or from 0I k

eq. .
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9HOMONUCLEAR CROSS-CORRELATION CROSS-RELAXATION RATES

FIG. 5. Two-dimensional spectrum of cyclosporin acquired with the sequence for creation through cross-correlation, and detection through J coupling
(Fig. 4) . For this particular spectrum, the effective field was tilted by an angle u Å 257 out of the Oz axis; the mixing time was tm Å 230 ms. This
experiment has been acquired in the phase-sensitive mode through the echo–antiecho procedure. The total acquisition time was about 11 h. The perturbing
pulse consists of a 907 hard pulse followed by a strong gradient. The same labeling as in Fig. 3 has been used. One can observe the variation of intensity
relative to Fig. 3 and that several cross peaks have disappeared.

then to convert them back by the evolution under the influ- TPPI (45) or the States (50) schemes as in the TQS se-
quence. Indeed, the encoding gradients enable only a betterence of cross-correlation along an effective field axis. Figure

7 shows the J– d pulse sequence. For u Å 07, a similar selection of the transfer p Å {1 toward p Å {3, but the
two coherence pathways are simultaneously acquired.sequence has been suggested by Bull (49) , but to the au-

thor’s knowledge it has never been demonstrated experimen- An example of spectrum acquired with the J– d sequence
is presented in Fig. 8. The interesting feature of this sequencetally. The first part of the pulse sequence (until the evolution

time t1) is identical to that of TQS (Fig. 2) . The 907 hard can immediately be noticed. We consider a linear spin net-
work of three spins I j –I k–I l with only Jjl Å 0, and withoutpulse which follows the evolution period t1 allows the con-

version of transverse triple-quantum coherences to longitudi- loss of generality the evolution of transverse coherence of
nal three-spin order. The evolution of the latter may allow positive number of quanta. We start from I k

/ after the first
the creation of longitudinal one-spin order. Finally the 907 907 hard pulse. The density matrix after evolution due to the
hard pulse converts longitudinal one-spin order into single- scalar coupling followed by the second 907 hard pulse con-
quantum transverse coherences which are detected. The 72- tains the triple-quantum coherence term I j

/I k
/I l

/ , which
step phase cycling of this experiment is obtained by combin- evolves at the frequency vj / vk / vl during t1 . Converting

this triple-quantum transverse coherence into longitudinaling the 12-step phase cycling of TQS with a 6-step phase
cycling on the third 907 hard pulse which selects the coher- three-spin order I j

Z I k
ZI l

Z along the effective field and then
letting the system evolve under the influence of relaxationence transfer Dp Å {3. As a result of the use of encoding
allows the creation of longitudinal one-spin order on eachgradients, reduced phase cycling can be used. Phase discrim-

ination in the F1 dimension can be obtained using either the spin I j
Z , I k

Z , and I l
Z . Each coefficient in the density matrix
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10 HERVÉ DESVAUX

FIG. 6. Examples of buildup curves obtained on the cyclosporin molecule using the sequence for generating through cross-correlation and detection
through J coupling (Fig. 4) . They correspond to cross peaks labeled 4 and 5. The angle u chosen was equal to 07, and the perturbing pulse was a p
pulse. Spectra were acquired in the magnitude mode, and the experiment time was about 4 h per spectrum. The y axis is in arbitrary units. The straight
lines have been fitted considering the point (0, 0) and five out of the six experimental points. The choice was based on a comparison among the best-
fit x 2 values. Similar behaviors were observed for other cross peaks. In the linear domain, the slopes are proportional to the sum of the cc-cross-relaxation
rates given the three-spin orders considered.

depends on the cc-cross-relaxation rates dj,kjl , dk ,jkl , and dl ,j lk easily be noticed in the amide proton domain. The peak
intensity ratio along a row allows one to compare the relativerespectively. The last 907 hard pulse enables the signal detec-

tion. As a consequence, cross peaks at the frequency (vj / values of dj,kjl , dk ,jkl , and dl ,j lk . In the relaxation time domain
of linear response and for an isotropic Brownian motion,vk / vl , vj) are allowed in contrast to the TQS or the d– J

experiment. Such cross peaks are observed in Fig. 8, as can since the same amount of initial three-spin order is present

FIG. 7. Pulse sequence used to study in-phase dipole–dipole cross-correlation. The transverse triple-quantum coherences are created through transverse
evolution due to scalar coupling and back transformed through evolution under the influence of cross-correlation. The same definitions as previously
stated are used. f3 is equal to 12 1 07, then 12 1 607, 12 1 1207, 12 1 1807, 12 1 2407, 12 1 3007. The receiver phase f *r is 07, 1807, 07, 1807, 07,
1807, 1807, 07, 1807, 07, 1807, 07, 1807, 07, 1807, 07, 1807, 07, 07, 1807, 07, 1807, 07, 1807. Phase-sensitive experiments are obtained by the same manner
as that for the TQS experiments. During the mixing time tm, self-relaxation and ac- and cc-cross-relaxation from the longitudinal three-spin orders act
on the spin system. Only the created one-spin order coherences induce cross peaks with nonvanishing integrals.
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11HOMONUCLEAR CROSS-CORRELATION CROSS-RELAXATION RATES

FIG. 8. This spectrum was obtained with the sequence of Fig. 7. The triple-quantum coherences are created by J evolution and back transformed
by cross-correlation. For this experiment, we used D Å 25 ms, u Å 157 and tm Å 150 ms. A 1807 hard pulse was added after the last 907 hard pulse
(see main text) . The duration of this experiment was about 55 h. One can observe the appearance of the cross peak 1* which corresponds to a cross-
correlation transfer from HNHaHb of Val-5 to HN . The strong t1 noise is due to the low receiver gain relative to the intensity of the observed signal.

at tm Å 0, the cross-peak intensity ratio R of (vj / vk / sequence is presented in Fig. 9. After perturbing the density
matrix from its thermal equilibrium value by the first hardvl , vj) and (vj / vk / vl , vk) is equal to
pulse, the system evolves under the influence of relaxation;
cross-correlation allows the creation of all longitudinal odd-

R Å Ijkl, j(tm)
Ijkl,k(tm)

Å (3 cos2f kjl
s 0 1)

(3 cos2f jkl
s

01)

r 3
kl

r 3
j l

. [23] spin orders. The 907 hard pulse preceeding the evolution
period converts the multispin order into multiquantum trans-
verse coherences. The next 907 hard pulse performs the op-A careful study of the peak pattern shows that not all
posite transformation, and then the system evolves undercross peaks are in pure absorption in both dimensions. The
the influence of relaxation. Finally, the last 907 hard pulsecancellation of zero-quantum cross peaks will be discussed
transforms longitudinal one-spin order into transverse single-later, but as mentioned before, since the relevant signals are
quantum coherence which can be acquired.in-phase, the integration, in the phase-sensitive experiment,

The principle of this experiment can be compared to thecircumvents this problem. Finally, while it is difficult with
3D NOESY–NOESY experiment (51) , where the first partsequences which start by evolution due to cross-correlation
(907– t1–907) has been replaced by the perturbing pulse. In(d– J or d– d) , this sequence can easily be modified to be
the sequence of Fig. 9, one can choose any number of quanta

used in one dimension, by the replacement of the first 907
during the t1 delay. In our case we have chosen the transverse

hard pulse by a selective excitation.
triple-quantum coherences, but the selection of single and

C. Creation and Back Conversion through triple quanta can be performed, giving access to the normal-
Cross-Correlation ization factor. It is actually not useful, except for clarity

reasons, to acquire single- and triple-quantum coherencesThe last solution consists of the combination of the two
relaxation parts of the d– J and J– d experiments. The d– d during t1 , since longitudinal three-spin order 4I k

ZI l
Z Im

Z is also
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12 HERVÉ DESVAUX

FIG. 9. Pulse sequence to study cross-correlation effects even in the case of vanishing J coupling values; the transverse triple-quantum coherences
are created and back converted through evolution under the influence of cross-correlation. t *m is the first relaxation period of the sequence. All parameters
have the same definitions as those described in the previous figure legends. The a arrow points to the spin order pathway as a function of the choice of
perturbing pulse (saturation or inversion pulse) . The arrows b and b * show that one can select at the same time the single- and triple-quantum coherences
during the evolution time t1 . In the last case, the phases f1 , f3 , and fr become f1 Å x , 0x , 0x , x ; f3 Å x , x , x , x , 0x , 0x , 0x , 0x ; fr Å x , 0x ,
0x , x , 0x , x , x , 0x ; and phase-sensitive experiments are obtained by adding 907 to f1 .

transformed by a 907 hard pulse into the single-quantum are in-phase in both dimensions, although some distortions
due to anti-phase single-quantum coherence at t2 Å 0 arecoherence 4I k

/I l
/Im

0 . As a consequence, a classical 3D
present, but their effects vanish with signal integration. TheNOESY–NOESY experiment contains dipole–dipole cross-
cross-peak assignment can be performed. On this spectrum,correlation information. To our knowledge, such cross peaks
cross peaks in the amide domain are present, although theyhave never been reported. But u Å 07 is not the best angle
were absent in the d– J experiments. To improve the experi-to study dipole–dipole cc-cross-relaxation in a large protein,
mental conditions of signal acquisition, gradient encodinga case where the NOESY–NOESY experiment becomes rel-
sequences have been used for the acquisition of this particu-evant. Experimentally, for the sequence consisting in moni-
lar spectrum. They allows one to choose a receiver leveltoring the single- and triple-quantum coherences, it is really
more adapted to the signal intensity, although, as previouslyimportant to choose a saturation preparation pulse to obtain
mentioned, the experiments suffer from lack of quantitativityone-spin order signal on the same order of magnitude as the
because of the molecular diffusion and selection of only onethree-spin order signal. Although we have implemented this
coherence pathway. We were also able to acquire spectrasaturation pulse, the experimental signal was too weak to
(not shown) with the d– d sequence without encoding gradi-obtain quantitative results.
ents or with angles u different from 07.The minimum phase cycling depends on the choice of

the quantum number selection during t1 . For triple-quantum
selection, one obtains a 72-step phase cycling by the compo- V. DISCUSSION
sition of (1) the 12 steps on the 907 hard pulse preceeding
the delay t1 , corresponding to the selection of Dp Å {3 (6 A. Spectral Density Determination
steps) and the suppression of axial peaks (factor 2) , and
(2) the 6 steps for selection of Dp Å {3 on the 907 hard The determination of spectral density functions of biomol-
pulse which follows the evolution time t1 . Phase-sensitive ecules provides information useful in the comprehension of
experiments can be acquired either in States mode or in the molecular recognition processes associated to their bio-
TPPI mode by the incrementation of the hard pulse phase logical activity (17, 18, 52, 53) . Many methods have been
preceeding t1 by 307 from one FID to the next. In principle, proposed, but more measurements are still needed. It would
this sequence allows the study of cross-correlation between be interesting to explore how spectral density values derived
noncoupled protons. Indeed, the sequence never requires a from cross-correlation cross-relaxation rates can be ex-
nonvanishing J coupling value. The principle of exploitation ploited. Some methods have been reported in the hetero-
is identical to that of the J– d sequence: a cross peak at the nuclear case (11) for the study of protein side-chain dynam-
frequency (vj / vk / vl , vk) is proportional ( in the time ics but none in the homonuclear case. As already mentioned,
domain of linear response) to the cc-cross-relaxation rate by measuring these rates at, at least, three angles u, it is

theoretically possible to determine the dipole–dipole cross-s j
jkl Å dj,kjl .
We have used this sequence with the selection of only correlation spectral density values at three frequencies with-

out any assumption on the motional model. As a test of thethe triple-quantum coherences during t1 . As an example, a
spectrum is shown in Fig. 10. The global cross-peak patterns consistency of our approach and to explore its capabilities,
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FIG. 10. Spectrum obtained by the sequence of Fig. 9. The transverse triple-quantum coherences are created and detected by cross-correlation. For
this particular experiment, we have used encoding gradients before and after the mixing time tm. The perturbing pulse was a 1807 pulse and the last 907

hard pulse was replaced by a 907 pulse followed by a 1807 pulse in quadrature. The angles u of the two mixing times were equal to 07. The two durations
were t *m Å 250 ms and tm Å 125 ms. The total experiment time was about 45 h. The same labels as previously were used. One can observe cross peaks
for the amino acid D-Ala-8 at the chemical shift in dimension 1 of HNHaHb with a chemical shift in dimension 2 of Ha (peak 3) , but also HN (peak 3*)
and Hb (peak 39) . For the amino acid Val-5, only HN (peak 1*) and Ha (peak 1) were observed. The cross peak 5 * corresponds to the chemical shift
in dimension F1 of HaHbH *b and of HN in dimension F2 of the amino acid D-Ala-8. It may correspond to a spin-diffusion process.

we have recorded a series of spectra at various mixing times the cc-cross-relaxation rate decreases much faster with the
angle u than would result from the isotropic Brownian rota-and various angles u. We have used the d– J sequence (Fig.

4) , since it allows us to obtain spectra in the shortest experi- tion. Finally, the study of Fig. 11 reveals that all cross peaks
do not exhibit the same behavior as a function of the anglement time. We used nine angles u from 0 to 607 and two

(75 and 150 ms) or three (50, 100, and 150 ms) mixing u, showing that all the cross-correlation spectral density
functions are not identical.times. The total number of spectra was 23. Figure 11 shows

the initial buildup slope obtained for various cross peaks as It is outside the scope of this article to explore completely
the cross-correlation spectral density properties of cyclo-a function of the angle u. We have superimposed two theoret-

ical curves for cross peak HaHbH *b r Ha of the methyl of sporin in CDCl3 , but the surprizing behavior of the spectral
density function requires comments. Cyclosporin in solutionLeucine 5. For these two curves, we used the angular depen-

dence of the cc-cross-relaxation rate dk ,lkm (Eq. [10]) . The adopts different conformations (43) . On the other hand, the
sequence used measures the sum of the cc-cross-relaxationdashed line corresponds to a rigid isotropic molecule and a

correlation time of 0.27 ns as derived from off-resonance rates, where each of them may be either positive or negative.
It is known that this kind of peptide is rather flexible inROESY measurements. The spectral density functions are

thus given by Eq. [19]. The solid line is an adjustment using solution (54) so that the internal dynamics may strongly
influence the cross-correlation spectral density functions.the theoretical dependence of the cc-cross-relaxation rate

dk ,lkm on the angle u (Eq. [10]) , which implies that J(0) Ç The result is that no constraint can be used on theirs signs
and magnitudes. It must also be noticed that experimentalJ(v) and J(2v) Ç 0. This experimental result proves that
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posite 907 hard pulse. For the cancellation of the always
possible zero-quantum cross peaks, we have tried various
schemes. Due to a software bug in our spectrometers, the
random modulation of the mixing time from one scan to
another (55) or the accordion method (56) induces more
noisy spectra when an off-resonance RF irradiation is applied
during tm, but an improvement in the cancelation of the
residual phase distortion in the J– d experiment has been
noticed. We have also used the method consisting of
applying a small B0 gradient in the presence of a strong on-
resonance RF irradiation just after the evolution time (57) .
A real improvement in the cancelation was noticed but asso-
ciated with a decrease in sensitivity also observed in the
case of NOESY experiments.

2. Sensitivity. The major problem with the three se-
quences is their low sensitivity. If we consider the relaxation
rate expressions, cc-cross-relaxation rates are on the sameFIG. 11. Variation of the cc-cross-relaxation rates obtained as a function
order as ac-cross-relaxation rates for most values of the angleof the angle u for three different cross peaks (3, 4, and 6) . The ordinates

are in arbitrary units. Moreover, the rates corresponding to the Ala-7 have u. It is true that because of their dependence with the angle
been scaled by a factor 1/5. The dashed line corresponds to a correlation f lkm

s, some cc-cross-relaxation rates can be vanishingly
time of 0.27 ns assuming an isotropic Brownian motion. The solid line small, but it is not possible that this should be the case forcorresponds to a fit using Eq. [10] for the cross-correlation involving the

all of them. We can acquire a reasonably good NOESYthree-spin order on Ha , Hb , and Hb= of the MeLeu-9 (cross peak 6) . We
spectrum on the cyclosporin sample in about 1 h, but what-have chosen for this curve J(0) Å J(v) and J(2v) Å 0. One can observe

that the behavior as a function of the angle u corresponding to the various ever the cross-correlation sequence used, we need an experi-
cross-correlation cross peaks is different, thus showing the effect of internal mental time of at least one order of magnitude longer than
dynamics on cross-correlation rates. that used for NOESY. There are also some intrinsic reasons

which explain why the three sequences do not produce re-
sults with the same signal-to-noise ratio. Indeed the sequence

bias may be present. Indeed no assessment of the quality
d– J has the great advantage of allowing the use of well-

of the adiabatic rotations on longitudinal three-spin order adapted acquisition gain level due to the gradient filtering
coherences has been performed; we simply use the same just before the acquistion. The same technique could be used
values as that for the study of longitudinal one-spin order for the J– d and d– d sequences, but the experimental results
coherence in off-resonance ROESY (36) . Moreover the ab- suffer from the signal loss by molecular diffusion in the
sence of ‘‘normalization peaks’’ and the increase of self- case of cyclosporin in chloroform at room temperature. The
relaxation but also of cross-relaxation rates with the angle second inherent difficulty is related to the conversion of
u (see theoretical section) makes it possible that what we transverse triple-quantum into three-spin order coherences.
observe does not result from internal dynamics only. Only 1/4 of the magnetization is converted; the same factor

is, in fact, present for the TQF-NOESY and TQF-ROESYB. Comparison of the Sequences and Possible
experiments. The last remark concerns the possible magneti-Improvements
zation loss by relaxation during the evolution time t1 , since

1. Phase of the cross peaks. It can be experimentally we consider the transverse evolution of triple-quantum co-
noticed that in the J– d and d– d experiments cross peaks herences. It turns out that our experiments do not suffer from
are not always purely in-phase. Although these distortions this, because of the large spectral width and the small number

of t1 values used. However a careful study shows that thesedo not prevent the quantification through integration, we
intrinsic reasons are not sufficient to explain the low signal.have tried various methods to cancel them. First, if the qual-
A comparison of experimental signals between a cross-relax-ity of the last 907 hard pulse which preceeds the acquisition
ation and a cross-correlation experiments shows that a factoris not perfect, it may happen that the longitudinal multispin
of about 40 is missing in the latter, which reduces to aboutorder coherences are converted into antiphase single-quan-
one order of magnitude when the 1/4 factor, as describedtum transverse coherences and finally detected. To prevent
above, is taken into account. A possible reason could be thethis, we have modified the two sequences and used a com-
large flexibility of the cyclosporin at room temperature,posite 907 hard pulse composed of a 907–1807 sequence
which averages out the cc-cross-relaxation rates much fasterwhere the phase of the p pulse is in quadrature relative to
than the ac-cross-relaxation rates through the fluctuation ofthe p /2 pulse (34) . An improvement was noticed and the

spectra of Figs. 8 and 10 have been acquired with this com- the angle f lkm
s.
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1, 3 (1991).967 (1983).
55. S. Macura, Y. Huang, D. Suter, and R. R. Ernst, J. Magn. Reson.

46. N. Müller, G. Bodenhausen, and R. R. Ernst, J. Magn. Reson. 75, 43, 259 (1981).
297 (1987).
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